Learning Kernels from Distance Constraints

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distance Metric Learning with Kernels

In this paper, we propose a feature weighting method that works in both the input space and the kernel-induced feature space. It assumes only the availability of similarity (dissimilarity) information, and the number of parameters in the transformation does not depend on the number of features. Besides feature weighting, it can also be regarded as performing nonparametric kernel adaptation. Exp...

متن کامل

Learning with Distance Substitution Kernels

During recent years much effort has been spent in incorporating problem specific a-priori knowledge into kernel methods for machine learning. A common example is a-priori knowledge given by a distance measure between objects. A simple but effective approach for kernel construction consists of substituting the Euclidean distance in ordinary kernel functions by the problem specific distance measu...

متن کامل

Novel Distance-Based SVM Kernels for Infinite Ensemble Learning

Ensemble learning algorithms such as boosting can achieve better performance by averaging over the predictions of base hypotheses. However, most existing algorithms are limited to combining only a finite number of hypotheses, and the generated ensemble is usually sparse. It has recently been shown that the support vector machine (SVM) with a carefully crafted kernel can be used to construct a n...

متن کامل

Kernels for Global Constraints

Bessière et al. (AAAI’08) showed that several intractable global constraints can be efficiently propagated when certain natural problem parameters are small. In particular, the complete propagation of a global constraint is fixed-parameter tractable in k – the number of holes in domains – whenever bound consistency can be enforced in polynomial time; this applies to the global constraints ATMOS...

متن کامل

Kernels for Global Constraints

Bessière et al. (AAAI’08) showed that several intractable global constraints can be efficiently propagated when certain natural problem parameters are small. In particular, the complete propagation of a global constraint is fixed-parameter tractable in k – the number of holes in domains – whenever bound consistency can be enforced in polynomial time; this applies to the global constraints AtMos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IPSJ Digital Courier

سال: 2006

ISSN: 1349-7456

DOI: 10.2197/ipsjdc.2.441